
User-Managed 
Access (UMA) 
101
Alec Laws
Kantara Initiative UMA Work Group
@UMAWG | tinyurl.com/umawg
IIWXXXIII | 12 Oct 2021



Topics

• Overview
• Use cases
• New work
• UMA and decentralized identity
• Business-legal-technical (BLT) implications
• Technical big picture
• Technical deep dive

2



OAuth and UMA

5

resource owner

client

authorization 
server

resource server

OAuth enables constrained 
delegation of access to apps on 
request

Alice can agree to app connections 
and also revoke them

“ALICE-TO-SELF” SHARING

uses

domain



OAuth and UMA

6

resource owner

client

authorization 
server

resource serverresource server resource server

requesting 
party

UMA adds control of cross-party 
sharing, letting Alice be absent
when Bob uses a client to attempt 
access

Alice controls trust between 
resource hosts and authorization 
services – enabling a wide 
ecosystem of resource hosts, so 
Alice can manage sharing across
them

“ALICE-TO-BOB” SHARING

UMA2 GRANT

UMA2 FEDAUTHZ

uses

can be in different domains

inside



UMA and consent
Consent (and consent to contract) legally require 
Manifestation, Knowledge, and Voluntariness –
more often honored in the breach

Cookie consent
App permissions

Marketing preferences
Third-party permissions

ToS agreements

Digital consent has serious practical challenges 
achieving revocability, contract meeting of the 
minds, choice in relationship building, and 
consent seeker good faith

7

UMA enables permissioning that is asynchronous

Share with parties, with groups, by relationship
Respond to pending requests
Monitor all current shares across sources
Modify one or more shares
(Respond to request at run time à la consent)

It is a technology that can enable right-to-use 
licensing within a Me2B framework of mutual 
agency and value exchange

L. LeVasseur and E. Maler, "Beyond Consent: A Right-to-Use License for Mutual Agency," in IEEE Communications Standards Magazine, vol. 3, no. 4, pp. 52-59, December 2019, doi: 10.1109/MCOMSTD.001.1900031.



Benefits for individuals: a summary

9

9

Choice in sharing 
with other parties

Convenient 
sharing/approval with 
no outside influence

Centralizable
monitoring and 
management

Control of 
who/what/how at

a fine grain



Benefits for service providers: a summary

10

True secure 
delegation; no 

password sharing

Scale permissioning
through self-service

Resources accessed 
from distributed 

locations

Foster compliance 
through standards

control

transparency

protection



Typical patterns

11

Alice-to-Bob
(person-to-person) 
delegated sharing of 
health data/devices, 
financial data, 
connected cars...

Enterprise-initiated
delegated sharing –
enterprise API access 
management, access 
delegation between 
employees

Alice-to-Alice
(person-to-self)
delegated sharing –
proactive policy-
based sharing of 
OAuth-style app 
connections

E.g., Alice shares 
selected accounts with 
selected financial 
advisors

…but first Alice enables 
the Pension Finder 
Service to find and 
display her accounts

E.g., RS acting as RO



Lush Group
HealthyMePHR – also ShareMedData

12

Ø Patient Alice creates a policy to 
share with Dr. Erica, she selects 
her sharing preferences, and 
presses SHARE

Ø Patient sharing is easy!

ØSee HEART webinar recording

SHARE

https://www.youtube.com/watch?v=8wpYVQDvYJI&feature=youtu.be


ForgeRock Identity Platform – financial services example

13



Relationship-based health data sharing scenario

14

Alice gets
married to

Bob

Bob has no
relationship
with Alice

Bob gets
married to

Alice

Alice divorces
Bob, a qualifying

life event

Sharing hub ends 
all sharing and can 

prove it to Alice 
and auditors

Sharing hub 
allows the data 
access request

Alice uses
health insurer

as sharing hub for
three data sources

Alice shares a
subset of data with

Bob due to their 
relationship

Bob tries to
access data
within the 

subset

Bob’s data 
access attempt 

succeeds

Based on the change, 
Alice unshares all 

resources from Bob in 
one step



Key implementations
(more detail at tinyurl.com/umawg)

• ForgeRock – financial, healthcare, IoT, G2C…
• Gluu (open source) – API protection, enterprise, G2C…
• ShareMedData – healthcare 
• HIE of One / Trustee (open source) – healthcare
• IDENTOS – healthcare, G2C
• Pauldron (open source) – healthcare
• RedHat Keycloak (open source) – API protection, enterprise, IoT…
• WSO2 (open source) – enterprise…

15



New profiling work: Pensions 
Dashboard profile (contributed)

17

(partial sample)



Resource Manager extension: Extends 
Fed Authz, specifying an interface that 
allows an RS to work with any number 
of AS’s to enable resource 
management by one RO

authorization 
server

authorization 
server

New profiling work: RO-side 
relationship management

18

resource owner

(UMA)
client

authorization 
server

resource server

requesting 
party

uses

policy manager
(client)

uses

resource 
manager
(client)

policy API

manage API

could be the same app/agent/wallet, 
including in AS

uses

available
resources

RM
token

available
AS’s



UMA and (decentralized) identity

19

resource owner

client

authorization 
server

resource serverresource server resource server

requesting 
party

AS, RS, and client may be single-user
(dedicated) or multi-user (typically 
requiring identity and authentication)
AS and RS establish trust in 
(pseudonymous) resource owner context
Policy conditions need requesting party 
claims for authorization

Claims can be pushed by smart client 
ahead of token request (narrower 
ecosystem)
Requesting party can be redirected to AS 
for interactive claims gathering at AS or 
further services (wider ecosystem)

RS outsources all claims knowledge to AS

DID / VC approaches have been integrated 
at UMA’s various identity touchpoints by 
various implementers (e.g., HIE of One 
with uPort)

(decentralized) identity may be relevant here

UMA is identity-agnostic

UMA2 GRANT

UMA2 FEDAUTHZ

uses

can be in different domains



UMA technical 
and BLT

20

Key

lowercase = tech (specs)
Uppercase = Biz/Legal

= Permissions

= Licenses

Authorization Server 
Operator

authorization server

Resource Rights 
Administrator

resource owner
Requesting Agent
requesting party

Resource Server 
Operator

resource server
Client Operator

client

Delegates-perm-authority-to

Delegates-mgmt-to

Licenses-perm-granting-to

Licenses-perm-getting-to

Licenses-perm-getting-to

Permits-knowing-claims

Delegates-seek-authority-to

AGENCY CONTRACT

ACCESS CONTRACT

Data
Subject

Requesting
Party

Delegates-perm-authority-to

Delegates-mgmt-to

Delegates-seek-authority-to

Legal
Person

No trust required; “negative 
trust” is an option



The technical big picture
A technical summary of the two UMA 2.0 specifications and their tokens

21



The marvelous spiral of delegated sharing, squared

1. The UMA grant of OAuth
enables Alice-to-Bob 
delegation

2. UMA standardized an API 
for federated authorization
at the AS to make it 
centralizable

3. There are nicknames for 
enhanced and new tokens 
to keep them straight

22



The UMA extension grant adds…
docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

• Party-to-party: Resource owner authorizes protected-resource access 
to clients used by requesting parties
• Asynchronous: Resource owner interactions are asynchronous with 

respect to the authorization grant
• Policies: Resource owner can configure an AS with rules (policy 

conditions) for the grant of access, vs. just authorize/deny
• Such configurations are outside UMA’s scope

23

Requesting 
party

Resource 
owner Client

UX Opt  inShare ApproveMonitor Withdraw



UMA federated authorization adds…
docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

• 1-to-n: Multiple RS’s in different domains can use an AS in another 
domain
• “Protection API” automates resource protection
• Enables resource owner to monitor and control grant rules from one place

• Scope-grained control: Grants can increase/decrease by resource and 
scope
• Resources and scopes: RS registers resource details at the AS to 

manage their protection

24

Resource 
server

Resource 
server

Resource 
server

Authorization
server



Technical Deep Dive

25



The UMA grant
A walkthrough of the UMA extension grant of OAuth2 and permission tickets

26



The UMA extension grant 
flow and its options

27

The AS is acting as an agent for an absent RO

The client’s first resource request is tokenless

The RS provides a permission ticket and allows AS discovery

There are two claims collection options for meeting policy

Authorization assessment and token issuance has guardrails

RPTs can be upgraded, revoked, introspected, and refreshed

Resource 
owner

Authorization
server

Resource 
server

Requesting 
party

Client



The permission ticket: how you start building 
a bridge of trust
• Binds client, RS, and AS: Every entity may be loosely coupled; the 

whole flow needs to be bound
• It’s like an overarching state parameter or “ticket-getting ticket”
• Or maybe even a bit like an authorization code

• Refreshed for security: The client can retry RPT requests after non-
fatal AS errors, using either claims collection option of the grant flow
• The AS refreshes the permission ticket when responding with such errors

28



Pushed claims scenario:
for wide-ish ecosystems

29

The AS is the requesting party’s IdP and the client is the RP

The client pushes its existing ID token to the token endpoint

More detail on the RS’s initial response to the client

The AS is in the primary audience for this token

Somewhat resembles SSO or the OAuth assertion grant, where 
a token of expected type and contents is “turned in”



Interactive claims gathering 
scenario: for wide ecosystems

30

A claims interaction endpoint must have been declared in the 
discovery document to allow this flow

A key “metaclaim” to think about: consent to persist claims

The AS mediates gathering of claims from any source

Resembles the authorization code grant, but can apply to non-
unique identities and is repeatable and “buildable”

(eliding detail already seen)

A PCT potentially enables a better RqP experience next time; 
the AS can then re-assess using claims on hand



Federated authorization
A walkthrough of UMA federated authorization and its protection API

31



A new perspective on the 
UMA grant

32

How does the RS know what ticket the AS is associating with 
the RS’s recommended permissions?

Let’s standardize an interface at the AS for these jobs

How does the AS know when to start protecting resources?

Is there anything special about token introspection?



The protection API: how you federate authorization

• RS registers resources: This is required for an AS to be “on the job”
• Scopes can differ per resource
• Resource and scope metadata assist with policy setting interfaces

• RS chooses permissions: The RS interprets the client’s tokenless
resource request and requests permissions from the AS
• The AS then issues the initial permission ticket

• RS can introspect the RPT: UMA enhances the token introspection 
response object
• RO controls AS-RS trust: The protection API is OAuth-protected
• The resource owner authorizes the scope uma_protection
• The issued token is called the PAT

33

Resource 
server

Resource 
server

Resource 
server

Authorization
server



The resource registration 
endpoint

34

Registering a resource puts it under protection

Setting policies can be done anytime after creation

Deregistering a resource removes it from protection



Resource and scope registration

• The RS is authoritative for what its resource 
boundaries are
• It registers them as JSON-based descriptions
• There is a resource “type” parameter

• Scopes can be simple strings or URIs that 
point to description documents

35

Create request:
POST /rreg/ HTTP/1.1 Content-Type: application/json
Authorization: Bearer MHg3OUZEQkZBMjcx
...
{ 

"resource_scopes":[ 
"patient/*.read"

],
"icon_uri":"http://www.example.com/icons/device23",
"name":"Awesome Medical Device Model 23",
"type":"https://www.hl7.org/fhir/observation.html"

}

Response:
HTTP/1.1 201 Created
Content-Type: application/json
Location: /rreg/rsrc1
...
{ 

"_id":"rsrc1"
}



The permission endpoint

36

The RS interprets the client’s tokenless (or insufficient-token) 
resource request

The RS must be able to tell from the client’s request context 
which RO and AS were meant

Request:
POST /perm/ HTTP/1.1
Content-Type: application/json
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx
...
{  

"resource_id":"rsrc1",
"resource_scopes":[  

"patient/*.read"
]

}

Response:
HTTP/1.1 201 Created
Content-Type: application/json
...
{  

"Ticket":"016f84e8-f9b9-11e0-bd6f-
0021cc6004de"
}



The token introspection 
endpoint

37

UMA enhances the token introspection response object

A permissions claim is added, with resource ID-bound scopes

Request:
POST /introspect HTTP/1.1
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx
…
token=mF_9.B5f-4.1JqM

Response:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
…
{  

"active":true,
"exp":1256953732,
"iat":1256912345,
"permissions":[  

{  
"resource_id":"rsrc1",
"resource_scopes":[  

"patient/*.read"
],
"exp":1256953732

}
]

}



Authorization assessment
The UMA guardrails around issuing permissions

38



Authorization assessment: how the AS adheres to the 
RO’s wishes in the larger context

39

The client can request scopes at the token endpoint, but must 
have pre-registered them with the AS for it to work

Permissions associated with the ticket can add to total 
requested scopes

If authorization assessment results in only a subset of client-
desired scopes, the AS can choose to error

The AS treats the scopes in this intersection as matching any
available scope associated with a resource in the ticket



Use case: Calendar sharing
The UMA protocol in action

40



Detailed use case

• Alice needs to coordinate a meeting with an important client Bob
• Alice wants to allow Bob to view her calendar so he can pick a time 

that works for both of them
• Bob can schedule over normal calendar events but not ones 

designated as high priority



Use Case Actors

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob



Alice registers protection for her calendar 

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob

OAuth2
Flow
{PAT}

Register Calendar
endpoints and permissions



Alice UMA protects her calendar

• Standard OAuth2 flow between myCals and authZ4me to obtain a 
“PAT”
• myCals registers Alice’s calendar
• https://mycals.example.com/cal/alice/work

• View, view_busy, delete, update, download, publish
• Schedule_all, schedule_normal



Alice defines authorization policy

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob

AuthZ Policy:
Must be Bob
Perm:
view_busy
schedule_normal



Alice sends Bob an email

Hi Bob,

Please view my calendar and schedule the 
meeting we spoke about today.

https://mycals.example.com/cal/alice/work

Thanks,
Alice



Bob meets claims to access Alice’s calendar

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob

Claims negotiation
via

Permission ticket



Bob subscribes to Alice’s calendar

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob

Subscribe
{RPT}

Calendar View

Select Mtg
Time



Bob schedules a meeting with Alice

• Scheduleme POST’s to 
• https://mycals/cal/alice/work/meeting

• Date, time, location
• Passes RPT in the HTTP Authorization header

https://mycals/cal/alice/work/meeting


Meeting added to Alice’s calendar

authZ4me
(UMA AS)

scheduleMe
(cal client)

myCals
(cal srvc)

Alice

Bob

Add Mtg
{RPT}

Mtg Scheduled

Select Mtg
Time



Privacy and “BLT” implications
The bigger business-legal-technical picture

51



Relevance for privacy beyond “empowered 
flows”
• Features relevant to privacy regulations (GDPR, CCPA, OB, PSD2, CDR, 

HHS ONC info blocking rules...):
• Asynchronous resource owner control of grants
• Enabling resource owner to monitor and manage grants from a “dashboard”
• Auditability of grants (consent) and PAT-authorized AS-RS interactions

• Work is well along on an UMA business model
• Modeling real-life data-sharing relationships and legal devices
• Technical artifacts are mapped to devices
• Goal: tear down artifacts and build up new ones in response to state changes

52



UMA implications…

53

…for the client

• Simpler next-step 
handling at every 
point

…for the RS

• Standardize 
management of 
protected 
resources

…for the RO

• Control data 
sharing/device 
control

• Truly delegate 
access to other 
parties using 
clients

…for the AS

• Offer 
interoperable 
authorization 
services

• Don’t have to 
touch data to 
protect it

…for the RqP

• Seek access to a 
protected 
resource as 
oneself

…for the client 
operator

• Distinguish 
identities of 
resource owners 
from mere users

…for the resource 
server operator

• Externalize 
authorization 
while still owning 
API/scopes

…for the resource 
rights admin

• Manage sharing 
on behalf of data 
subjects, not just 
for oneself

…for the 
authorization 

server operator

• Prove what 
interactions took 
place or didn’t

…for the 
requesting agent

• Revoke access (or 
request it) to 
someone else’s 
assets



Join us!
Thank you!
Questions?
Alec Laws

Kantara Initiative UMA Work Group

@UMAWG | tinyurl.com/umawg

IIWXXXIII | 13 Oct 2021


